Testing for model selection in predicting aggregate variables ∗
نویسنده
چکیده
This paper focuses on the choice between aggregate and disaggregate models, consisting in both univariate and multivariate specifications, in predicting aggregate variables. Here, we suggest a formal hypothesis testing procedure for in-sample model selection. The empirical size and power of the test are investigated via the use of Monte Carlo simulations. Empirical results show that the test has good performance not only when the competitive models are non-nested specifications, but also when considering nested competitors.
منابع مشابه
EVALUATION OF CONCRETE COMPRESSIVE STRENGTH USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION MODELS
In the present study, two different data-driven models, artificial neural network (ANN) and multiple linear regression (MLR) models, have been developed to predict the 28 days compressive strength of concrete. Seven different parameters namely 3/4 mm sand, 3/8 mm sand, cement content, gravel, maximums size of aggregate, fineness modulus, and water-cement ratio were considered as input variables...
متن کاملA MULTI-OBJECTIVE OPTIMIZATION MODEL FOR PROJECT PORTFOLIO SELECTION CONSIDERING AGGREGATE COMPLEXITY: A CASE STUDY
Existing project selection models do not consider the complexity of projects as a selection criterion, while their complexity may prolong the project duration and even result in its failure. In addition, existing models cannot formulate the aggregate complexity of the selected projects. The aggregated complexity is not always equal to summation of complexity of projects because of possible syne...
متن کاملارایه مدلی مناسب با استفاده از ماشین بردار پشتیبان برای پیشبینی غلظت روزانه مونوکسیدکربن در هوای شهر تهران
Backgrounds and Objectives: Precise air pollutants prediction, as the first step in facing air pollution problem, could provide helpful information for authorities in order to have appropriate actions toward this challenge. Regarding the importance of carbon monoxide (CO) in Tehran atmosphere, this study aims to introduce a suitable model for predicting this pollutant. Materials and Method: W...
متن کاملPredicting Force in Single Point Incremental Forming by Using Artificial Neural Network
In this study, an artificial neural network was used to predict the minimum force required to single point incremental forming (SPIF) of thin sheets of Aluminium AA3003-O and calamine brass Cu67Zn33 alloy. Accordingly, the parameters for processing, i.e., step depth, the feed rate of the tool, spindle speed, wall angle, thickness of metal sheets and type of material were selected as input and t...
متن کاملPredicting Individual Response with Aggregate Data: A Conditional Means Approach
Researchers often predict individual behavior using a combination of individual and aggregate variables (e.g., zip code means). We show that in a linear model coefficients associated with individual variables will be inconsistently estimated if those variables are correlated with the underlying individual variables summarized to obtain the aggregate group means. Consistent estimates can be obta...
متن کامل